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The linear stability of fully developed Poiseuille flow of a Newtonian fluid in
a deformable neo-Hookean tube is analysed to illustrate the shortcomings of
extrapolating the linear elastic model for the tube wall outside its domain of validity
of small strains in the solid. We show using asymptotic analyses and numerical
solutions that a neo-Hookean description of the solid dramatically alters the stability
behaviour of flow in a deformable tube. The flow-induced instability predicted to exist
in the creeping-flow limit based on the linear elastic approximation is absent in the
neo-Hookean model. In contrast, a new low-wavenumber (denoted by k) instability
is predicted in the limit of very low Reynolds number (Re � 1) with k ∝ Re1/2

for purely elastic (with ratio of solid to fluid viscosities ηr = 0) neo-Hookean tubes.
The first normal stress discontinuity in the neo-Hookean solid gives rise to a high-
wavenumber interfacial instability, which is stabilized by interfacial tension at the
fluid–wall interface. Inclusion of dissipation (ηr �= 0) in the solid has a stabilizing
effect on the low-k instability at low Re, and the critical Re for instability is a sensitive
function of ηr . For Re � 1, both the linear elastic extrapolation and the neo-Hookean
model agree qualitatively for the most unstable mode, but show disagreement for other
unstable modes in the system. Interestingly, for plane-Couette flow past a deformable
solid, the results from the extrapolated linear elastic model and the neo-Hookean
model agree very well at any Reynolds number for the most unstable mode when the
wall thickness is not small. The results of this study have important implications for
experimental investigations aimed at probing instabilities in flow through deformable
tubes.

1. Introduction and background
The stability of fluid flow through tubes and channels with soft deformable walls

has been extensively studied in the last decade, both theoretically (Kumaran 1995,
1998a , b, 2003; Davies & Carpenter 1997; LaRose & Grotberg 1997; Shankar &
Kumaran 2000, 2001; Hamadiche & Gad-el Hak 2002; Gkanis & Kumar 2003,
2005) and experimentally (Kumaran & Muralikrishnan 2000; Muralikrishnan &
Kumaran 2002; Eggert & Kumar 2004). The interest in stability of flow through
deformable tubes stems from the ubiquity of such systems in the biological realm
(Grotberg & Jensen 2004), and more recently in microfluidic device applications
(Squires & Quake 2005). While fully developed Poiseuille flow through rigid tubes is
stable at any Reynolds number according to linear stability theory (Drazin & Reid
1981), laminar flow through deformable tubes can become linearly unstable because of

† Email address for correspondence: vshankar@iitk.ac.in



292 Gaurav and V. Shankar

flow-induced instabilities at the fluid–wall interface. Indeed, it has been predicted by
Kumaran (1995) that flow in a deformable tube can become unstable to axisymmetric
disturbances even in the creeping-flow limit (Reynolds number, Re = 0), when the non-
dimensional parameter characterizing solid deformability Γ = V η/(GRtube) exceeds an
O(1) critical value. Here, G is the shear modulus of the solid, Rtube is the tube radius,
V is the maximum velocity of the laminar flow and η is the viscosity of the fluid.
These predictions are based on an extrapolation of the linear elastic model for solid
deformations to finite strains, which is strictly valid only in the limit when the strain
in the solid is small compared to unity. However, when instability is predicted, the
base-state strain in the solid (proportional to the parameter Γ ) is O(1) which is
outside the domain of validity of the linear elastic solid. Henceforth, we will refer
to results obtained using linear elastic model at finite strains as results from the
‘extrapolated linear elastic model’ or from the ‘linear elastic approximation’. In order
to overcome the inconsistencies inherent in the linear elastic approximation, Gkanis &
Kumar (2003, 2005, 2006) used a frame-invariant neo-Hookean model (Malvern 1969;
Holzapfel 2000) that takes into account the nonlinear constitutive relation between
stress and deformation in a solid. For this case, they showed that the coupling between
base-state and perturbation variables occurs at several places in the governing linear
stability equations for the solid and interface conditions, in stark contrast to the
linear elastic approximation. The manner in which these additional couplings affect
the stability of the flow, however, is system-dependent: For plane-Couette flow past a
deformable wall, in the creeping-flow limit, results from both the extrapolated linear
elastic and neo-Hookean models agree well at larger values of wall thickness when
the Γ required for instability becomes small. In contrast, for free-surface gravity-
driven creeping flow down a deformable wall, Gkanis & Kumar (2006) showed many
qualitative differences between the two approaches, even at larger values of wall
thickness.

For the practically important case of fully developed Poiseuille flow in a deformable
tube, however, the consequences of employing a neo-Hookean solid model for
analysing the stability of the flow have not been examined thus far. Specifically,
which predictions of the extrapolated linear elastic model would survive if the wall is
modelled as a neo-Hookean solid? The objective of the present study is to determine
whether the nonlinear rheological behaviour of the solid qualitatively alters the
stability of Poiseuille flow in a deformable tube modelled as a neo-Hookean solid
with dissipative effects. Our results show, remarkably, that the stability characteristics
for flow in a deformable tube are very different for the neo-Hookean model. This is in
contrast to plane-Couette flow, where both the approaches yield qualitatively similar
results for thick solids. In the remainder of this section we provide a brief review of
relevant previous work, which will help set the context and emphasize the relation of
the present work with the existing literature on this subject.

The first systematic experimental study to explore the instability of laminar flow in
a soft deformable tube, to our knowledge, is due to Krindel & Silberberg (1979) (also
see Lahav, Eliezer & Silberberg 1973; Silberberg 1987), who fabricated micron-sized
tubes in soft polyacrylamide gels (shear modulus ∼ 103 Pa). They found that the
deviation of the actual flow rate in a gel-walled tube from the expected laminar-flow
value occurs at much lower Re compared to 2000 (the transition Re for flow in a
rigid tube), and attributed this to an instability of the laminar flow in the deformable
tube. The ratio of actual to theoretical laminar flow rates varied smoothly with Re, in
contrast to an abrupt transition in a rigid pipe. The transition velocity of the laminar
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flow Vt was found to obey the correlation Vt ∝ (GR2
tube/ηH ), where G is the shear

modulus of the gel, Rtube is the radius of the tube, η is the fluid viscosity and H is
the thickness of the gel wall. On the theoretical side, Kumaran, Fredrickson & Pincus
(1994) and Kumaran (1995), respectively, analysed the stability of plane-Couette flow
past a deformable solid and pipe-Poiseuille flow in a deformable tube, by employing
a linear elastic approximation for solid deformation. These studies considered the
creeping-flow (Re = 0) limit, and showed that the flow becomes unstable when the
wall deformability parameter Γ (defined above) exceeds a critical O(1) value. Both
plane-Couette flow and pipe-Poiseuille flow exhibited several qualitative similarities
in terms of their stability characteristics. Gkanis & Kumar (2003) revisited the plane-
Couette flow problem in the creeping-flow limit, but used a neo-Hookean solid model
to account for finite deformations in the solid, because the base-state strain in the solid
(proportional to Γ ) is nominally O(1) when the flow is predicted to be unstable by
the extrapolated linear elastic solid model. For large values of (non-dimensional) wall
thickness H , both the extrapolated linear elastic and neo-Hookean model predictions
agreed well, in part because the critical Γ required for instability decreases as Γ ∝ H −1

in the extrapolated linear elastic model, and it is expected that the predictions of
the linear elastic approximation will approach those of neo-Hookean solid for small
values of Γ . In addition, the first-normal stress difference in the base state of the
deformed neo-Hookean solid gives rise to a short-wave instability, much akin to that
found in co-extrusion of viscoelastic liquid layers (Renardy 1988), when Γ exceeds
a critical O(1) value. For large values of thickness, the most unstable mode is the
flow-induced instability which occurs at finite wavenumbers (0.1 <k < 5), while for
smaller wall thickness H � 1, the short-wave instability (k > 5) occurs first as Γ is
increased. Experiments by Kumaran & Muralikrishnan (2000) and Eggert & Kumar
(2004) carried out in a parallel-plate geometry confirmed the predictions obtained
using the extrapolated linear elastic model (Kumaran et al. 1994) because of the large
values of H ( > 5) used in the experiments.

For the stability of creeping flow in a deformable tube, interestingly, the critical
value of Γ required for destabilizing the flow in the creeping-flow limit (obtained
by the extrapolated linear elastic model) asymptotes to an O(1) quantity even as
H � 1 (Kumaran 1995). Consequently, there exists no regime (such as H � 1) in a
deformable tube where one can a priori expect the extrapolated linear elastic model
predictions to be valid. It is therefore possible to envision that the predictions for
the stability of flow in a neo-Hookean tube could be very different from that of
the extrapolated linear elastic model. Motivated by this observation, we carry out a
stability analysis in the Re = 0 and Re � 1 (but non-zero) limits for fully developed
flow in a neo-Hookean tube in §§ 3.1 and 3.2, and find drastic differences between
the results obtained from the two solid models: The creeping-flow instability in a
deformable tube predicted using the extrapolated linear elastic model is absent for
the neo-Hookean model. Instead, for a neo-Hookean tube, we predict (in § 3.2) a new
class of long-wave unstable modes for small (but non-zero) Re which are stabilized
by the dissipation in the solid material, and these new modes are absent in the linear
elastic approximation.

The unstable mode from the creeping-flow limit obtained using the extrapolated
linear elastic model continues (Kumaran 1998a) to larger Re, and the solid
deformability parameter Γ ∝ Re−1/3 for the instability to exist at Re � 1. Physically,
this unstable mode corresponds to a class of ‘wall modes’ (Gill 1965; Drazin &
Reid 1981), where the viscous effects in the fluid are confined to an O(Re−1/3) ‘wall
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layer’ close to the fluid–wall interface. Asymptotic analysis (Shankar & Kumaran
2001) showed that there are multiple downstream (with positive phase velocity) and
upstream travelling (with negative phase velocity) wave solutions, all of which are
neutrally stable in the leading-order approximation. These discrete modes represent
a type of shear waves in the deformable elastic tube, which is a class of transversely
propagating waves in an incompressible elastic solid (Achenbach 1973), whose wave
speeds scale as (G/ρ)1/2 for finite wavenumbers, and as (G/ρ)1/2(k∗Rtube)

−1 when
the wavenumbers are small (k∗Rtube) � 1. In this work, we label travelling waves
as downstream or upstream, respectively, based on whether their wave speeds are
positive or negative. For each downstream travelling wave, there is a first correction
which becomes unstable above a critical value of Γ , while the upstream travelling
modes were always found to be stable. We show in § 3.4 of this paper that, even
in the case of wall mode instability, there are some major differences between the
predictions from the two solid models. Alongside, we also address similar questions
for the case of plane-Couette flow past a neo-Hookean wall, in order to compare and
contrast the two geometries. Such a comparison is of interest because the stability
of fluid flow in these two geometries, viz., plane-Couette flow and pipe-Poiseuille
flow, have many similarities in rigid channels: both lack the ‘critical layer’ singularity
required for the Tollmein–Schlichting instability, and both are linearly stable at all
Re (Drazin & Reid 1981). Even for flow past a deformable wall modelled using the
linear elastic approximation, plane-Couette flow (Kumaran et al. 1994; Srivatsan &
Kumaran 1997) and pipe-Poiseuille flow (Kumaran 1995, 1998a) have very similar
stability characteristics. Our study shows that, remarkably, the results are qualitatively
very different for plane-Couette and pipe-Poiseuille flows when the deformable wall
is modelled as a neo-Hookean solid.

Another important body of literature related to the present study has focused
on the use of flexible solid surfaces for drag-reduction applications by the delay
of transition to turbulence using wall flexibility (Carpenter & Garrad 1985, 1986;
Carpenter & Gajjar 1990; Carpenter & Morris 1990; Davies & Carpenter 1997;
Gad-el hak 2003). These studies have shown that while wall flexibility can delay the
onset of Tollmein–Schlichting waves, it could induce new modes of instability in the
system. These new modes arise because of the elastohydrodynamic coupling between
fluid flow and the wall deformation, and lead to the propagation of waves at the
fluid–solid interface. Such unstable waves are often referred to as a ‘flow-induced
surface instability’ (FISI). The instabilities studied in the present work for flow in a
deformable tube are also a type of FISI, since the predicted unstable modes are a
consequence of solid deformability, and are absent in rigid-walled tubes.

The rest of this paper is organized as follows. The base state, linearized equations
and boundary conditions governing the stability of the flow are developed in § 2.
In § 3.1, we address the stability of flow in a deformable tube in the creeping-flow
(Re = 0) limit. The new class of low-Re, low-k unstable modes are identified using
asymptotic and numerical methods in §§ 3.2 and 3.3. The behaviour of these unstable
modes at high Re and the effect of dissipation in the solid are addressed in § 3.4. The
salient conclusions of the present work are given in § 4.

2. Governing equations
We consider the pressure-driven flow of an incompressible Newtonian fluid of

density ρ and viscosity η in a deformable tube as shown in figure 1. The inner and
outer radii of tube are Rtube and (1 + H )Rtube , respectively. (We use the non-standard
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Figure 1. Schematic illustration of the configuration and the non-dimensional cylindrical
coordinate system: pressure-driven flow of a fluid in a deformable neo-Hookean tube.

notation Rtube for tube radius because the symbol R is reserved later for the Lagrangian
radial coordinate in the solid.) At the outer surface, the deformable solid is assumed to
be perfectly bonded to a rigid tube. The deformable solid of the tube wall is modelled
as an impermeable and incompressible neo-Hookean viscoelastic solid (Fosdick & Yu
1996; Hayes & Saccocmandi 2002; Destrade & Saccocmandi 2004) of density ρ, shear
modulus G and viscosity ηs . Various physical quantities are non-dimensionalized at
the outset by using the following scales: Rtube for lengths and deformations, GRtube/η

for velocities and G for pressure and stresses. The base flow of interest is the fully
developed Hagen–Poiseuille velocity profile

vz(r) = Γ (1 − r2), (2.1)

where Γ = ηV/GRtube is the non-dimensional maximum velocity in the fluid and V is
the dimensional maximum fluid velocity. The non-dimensional governing equations
for the fluid are the Navier–Stokes continuity and momentum balance equations

∇ · v = 0, (2.2)

Re

Γ
[∂tv + v · ∇v] = −∇p + ∇2v. (2.3)

where v and p are the velocity and pressure fields in the fluid layer and Re = ρV Rtube/η

is the Reynolds number based on maximum fluid velocity. In the present scheme
of non-dimensionalization (GRtube/η for velocity and η/G for time) the Reynolds
number occurs only via the combination Re/Γ = ρGR2

tube/η
2 ≡ Φ . Here, Γ measures

the strength of the base laminar flow, and Φ characterizes the importance of inertial
effects in the fluid and elastic stresses in the solid. Thus, setting Φ =0 first and keeping
Γ arbitrary implies taking the creeping-flow limit, and with non-zero base flow in
the tube. Instead, setting Γ = 0 first and Φ arbitrary would correspond to a static
liquid thread inside an elastic tube of varying deformability. If conventional scales
(V for velocity, Rtube/V for time and Rtube for length) are used, this results in Re and
Γ being two independent parameters. Under that scheme, Re measures the strength
of inertial stresses in the fluid (and solid; see below) and Γ characterizes the ratio
of viscous stresses in the fluid to elastic stresses in the solid. If the limit Re =0 is
taken first and Γ is kept arbitrary, this corresponds to zero inertia in the fluid and
the solid, with base flow velocity being arbitrary. If the Γ = 0 limit is taken first, this
corresponds to a rigid tube, with Re measuring the strength of inertial effects with
respect to viscous effects.
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The governing equations for the fluid are written in terms of spatial (Eulerian)
coordinates (x = r, θ, z), while it is convenient (following Gkanis & Kumar 2003)
to refer the governing equations for the solid in terms of a reference (Lagrangian)
configuration, where the independent variables are the spatial positions X = (R, Θ, Z)
of material particles in the reference (i.e. unstressed) configuration. Thus, the spatial
(r, θ, z) coordinate system used for fluid motion is identical to the reference coordinate
(R, Θ, Z) system for the deformable solid. In the deformed state of the solid, the spatial
positions of the material particles are denoted by w(X), where w = (wR, wΘ, wZ). The
deformable solid is modelled as an incompressible neo-Hookean viscoelastic solid and
the mass and momentum conservation equations governing the dynamics of solid are
given as (Malvern 1969; Holzapfel 2000):

det(F) = 1, (2.4)

Re

Γ

[
∂2w

∂t2

]
X

= ∇X · P. (2.5)

In the above equations, F is the deformation gradient tensor defined as F= ∇Xw and
P is the first Piola–Kirchhoff stress tensor. The first Piola–Kirchhoff stress tensor is
related to Cauchy stress tensor by P = F−1 · σ . The Cauchy stress tensor for neo-
Hookean viscoelastic solid is split into an elastic part σ e and a dissipative part σ d

(Fosdick & Yu 1996; Hayes & Saccocmandi 2002; Destrade & Saccocmandi 2004):

σ = σe + σd, (2.6)

σe = −ps I + F · FT , σd = ηr (L + LT ). (2.7)

where ps is the pressure-like function related to actual pressure p̂s , in the neo-
Hookean solid as ps = p̂s + 1, L = Ḟ · F−1 is the spatial velocity gradient, overdots
represent material time derivatives and ηr = ηs/η is the ratio of solid to fluid
viscosity (Chokshi & Kumaran 2007, 2008). To simplify our calculations, we assume
a frequency-independent viscosity to describe the dissipative effects in solid medium.
Chokshi & Kumaran (2007) have argued that since the velocity of the gel in the
base state is zero, it is possible to replace (within a linear stability analysis) the
constant viscosity by a frequency-dependent viscosity. Real soft solid materials often
exhibit frequency-dependent viscosity (Muralikrishnan & Kumaran 2002; Eggert &
Kumar 2004), and the neutral stability curves for such cases can be obtained from
a calculation that assumes frequency-independent viscosity by following an iterative
procedure described in Muralikrishnan & Kumaran (2002). In the above governing
equations for solid layer, the density of the solid is assumed to be equal to the fluid
density because the densities of commonly used polymeric gels and elastomers are in
general not very different from those of viscous liquids. Thus, the ratio of solid to
fluid densities ρs/ρ will be close to one, and for small differences in densities we expect
that the qualitative predictions of the present study will remain unchanged. However,
for ρs/ρ � 1 or � 1, the density differences could modify the modes explored in the
present study and may introduce new modes of instabilities.

The boundary conditions at fluid–solid interface are the continuity of velocities
and stresses. At R =1 + H , the deformable solid wall is fixed onto a rigid surface
and hence the boundary conditions are those of no deformations (w = 0) at the rigid
surface. Symmetry conditions (vr = 0 and drvz = 0) are used at the tube centre. In the
base state, the solid is at rest with a non-zero displacement in z-direction due to shear
stress exerted by the base flow in fluid at fluid–solid interface. The overbar in the
following equations denote various base-state physical quantities. The steady-state
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base deformation and pressure field in solid layer are given as

wZ = Z + Γ [(1 + H )2 − R2], wR = R, wΘ = Θ, (2.8)

ps = p(z) + 4Γ 2(R2 − 1) − Σ, (2.9)

where Σ = γ /GRtube is the non-dimensional interfacial tension parameter at fluid–
solid interface and γ is the dimensional interfacial tension. The neo-Hookean solid
also exhibits a first normal stress difference in the base state: σRR − σZZ = − 4Γ 2R2

which results in a short-wave instability (Gkanis & Kumar 2003).
The temporal linear stability of the system is studied by imposing small

perturbations to the base state and linearizing the resulting governing equations and
boundary conditions about the base-state solution. Only axisymmetric disturbances
are considered in the present study, as was done in most of the previous studies.
Non-axisymmetric disturbances were analysed by Shankar & Kumaran (2000) for the
case of Poiseuille flow in a linear elastic tube, and it was shown that at high Re,
the non-axisymmetric modes could be more unstable, while at low and moderate Re

axisymmetric disturbances are more unstable. This is because of the possibility of an
‘inviscid instability’ for flow in a linear elastic tube subjected to non-axisymmetric
disturbances. The perturbations to different physical variables are expressed using the
standard normal mode decomposition as

(vr
′, wR

′) = (iṽr (r), iw̃R(R)) exp[ik(z − ct)]

for normal velocity and normal displacement fluctuations and f
′
= f̃ (r) exp[ik(z−ct)]

for fluctuations to all other dynamical variables. Here, f
′
is the perturbation to any

physical variable, f̃ (r) is the complex amplitude function of the disturbance, k is the
streamwise wavenumber of perturbations and c = cr + ici is the complex wave speed.
If ci > 0 (or ci < 0), flow will be unstable (or stable). The equations governing the
linear stability of the fluid, with dr ≡ d/dr , are

dr ṽr +
1

r
ṽr + kṽz = 0, (2.10)

−ikp̃ +

(
d2

r +
1

r
dr − k2

)
ṽz = i

Re

Γ
[kṽz(vz − c) + ṽrdrvz], (2.11)

−dr p̃ + i

(
d2

r +
1

r
dr − 1

r2
− k2

)
ṽr = −k

Re

Γ
(vz − c)ṽr . (2.12)

In the following discussion, the terms enclosed in boxes in the governing equations
for deformable solid wall (2.13)–(2.15) and in the interfacial conditions (2.18) and
(2.19) represent the different couplings between base state of solid and perturbation
variables. These couplings arise due to the constitutive nonlinearities in neo-Hookean
solid model, and will be absent if the solid wall is modelled as linear viscoelastic solid.
Thus, (2.10)–(2.21) without the boxed terms govern the stability of Hagen–Poiseuille
flow in the deformable tube when the solid wall is modelled as linear viscoelastic solid
(as in the earlier works of Kumaran 1995, 1998a , b). The linearized equations for the
solid layer are

dRw̃R +
1

R
w̃R + kw̃Z + 2ikΓ Rw̃R = 0, (2.13)
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−[8Γ 2kRw̃R − 4iΓ
(
dR + 1

R

)
w̃R] − ikp̃s + (1 − ikcηr )

(
d2

R +
1

R
dR − k2

)
w̃Z

− ikcηr (4ikΓ RdRw̃Z − 4k2Γ 2R2w̃Z + 4ikΓ w̃Z) = −k2c2 Re

Γ
w̃Z, (2.14)

[−8Γ 2kRw̃Z−2Γ kRp̃s+4iΓ dRw̃Z] + idRp̃s + (1−ikcηr )

(
d2

R+
1

R
dR− 1

R2
− k2

)
w̃R

− ikcηr (4ikΓ w̃R + 4ikΓ RdRw̃R − 4k2Γ 2R2w̃R) = −k2c2 Re

Γ
w̃R. (2.15)

The interfacial conditions linearized about the mean fluid–solid interface (r = 1) are

ṽr = −ikc w̃R, (2.16)

ṽz + iw̃R (drvz)r=1 = −ikc w̃Z, (2.17)

4Γ 2kw̃R − 2iΓ dRw̃R + 2k2cΓ ηrw̃Z

+(1 − ikcηr )(dRw̃Z − kw̃R) = (dr ṽz − kṽr ), (2.18)

−8iΓ 2w̃R − p̃s + 2i(1 − ikcηr )dRw̃R

+ 4ik2cηrΓ w̃R + Σ(1 − k2)iw̃R = −p̃ + 2idr ṽr . (2.19)

It must be noted that the term proportional to Σ(1 − k2) in (2.19) contains
contributions from both the radial curvature and axial curvature of the liquid–
solid interface to linear order. The contribution due to radial curvature (the term Σ),
which was neglected in the previous literature (Kumaran 1995, 1998a , b; Shankar &
Kumaran 2000), is responsible for causing a capillary instability similar to the Rayleigh
instability of a jet. We show in Appendix A that this destabilizing term could be
important in flow through micron-sized deformable tubes.

The symmetry conditions at the tube centre are

ṽr = 0, dr ṽz = 0, (2.20)

and finally, the boundary conditions at rigid surface (R = 1 + H ) are

w̃R = 0, w̃Z = 0. (2.21)

The stability of the system is governed by non-dimensional fluid velocity Γ , Reynolds
number Re, viscosity ratio ηr , thickness ratio H and the surface tension parameter
Σ . The stability of the system is determined by solving (2.10)–(2.21) for eigenvalue c

as a function of k, Re, Γ , H , ηr and Σ . We also discuss the stability characteristics of
plane-Couette flow past a neo-Hookean elastic solid at arbitrary Reynolds number in
order to compare and contrast the differences in the two geometries. The governing
equations for plane-Couette flow past a neo-Hookean solid in the creeping-flow limit
are given in Gkanis & Kumar (2003) and Chokshi & Kumaran (2007). These equations
are generalized to include fluid and solid inertia in this work, and are not displayed
here in the interests of brevity. We employed a combination of asymptotic analyses (in
the limits Re � 1 and Re � 1) and numerics to investigate the stability characteristics
of the present configuration. A pseudo-spectral collocation method (Boyd 1989;
Weideman & Reddy 2000) and a numerical shooting procedure (Kumaran 1998a;
Shankar & Kumaran 2001) with orthonormalization are used to numerically evaluate
the eigenvalues and stability boundaries.
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Figure 2. ci vs k curves showing the absence of finite-k viscous mode instability in the
creeping-flow limit for a neo-Hookean deformable tube: data for H = 5, Re = 0 and Σ = 0.
Only the high-k instability is present for k > 10, as shown in the inset.

3. Results
In the sections to follow, we show that the use of a neo-Hookean model yields

results that are very different from those predicted by extrapolated linear elastic
model. We first present the results for a purely elastic neo-Hookean solid with ηr = 0,
and the effect of dissipation in the solid is examined in § 3.4.1.

3.1. The creeping-flow limit

We begin by investigating the problem in the absence of inertia, i.e. the creeping-flow
limit. This limit is approached by first taking Φ ≡ ρGR2

tube/η
2 = Re/Γ to be zero, and

keeping Γ arbitrary. (Instead, if Γ is taken to be zero first, and Φ = ρGR2
tube/η

2 is kept
arbitrary, this would represent the case of a static liquid in a deformable tube.) In the
absence of flow (Γ = 0), the only relevant parameters are Σ and solid thickness H . In
this no-flow limit, we show in Appendix A that there exists a capillary instability of
the liquid inside a soft deformable tube. This capillary instability has been overlooked
in the earlier literature (Kumaran 1995, 1998a , b; Shankar & Kumaran 2000) because
of the neglect of the radial curvature of liquid–solid interface in the linearized normal
stress balance (2.19). We further show in the Appendix that flow has a stabilizing
effect on this instability for a neo-Hookean tube, while it has a destabilizing effect in
the extrapolated linear elastic model.

3.1.1. Flow-induced instability in the creeping-flow limit

The surface tension-induced instability is shown in Appendix A to be relevant only
for micron-sized tubes, and flow has a stabilizing effect on the capillary instability.
Thus, we now set Σ = 0 and focus our attention on the effect of flow (i.e. Γ ) on
the stability of the system. The characteristic equation is quadratic (in wave speed c)
in the creeping-flow limit. One of the two roots for c becomes unstable at high
wavenumbers when Γ is increased above a critical value, while the second root
remains highly damped at all k for any value of Γ . Figure 2 depicts ci vs k data for
the first root for different values of Γ for a neo-Hookean tube. It is important to
mention here that the first root is the same root which exhibits capillary instability for
Σ �= 0. Figure 2 shows that the short-wave perturbations (with k ∼ 10) are unstable
for higher values of Γ . This short-wave instability is due to the non-zero first normal
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Figure 3. Neutral stability curve for the short-wave instability driven by the first normal
stress difference in the creeping-flow limit for flow in a neo-Hookean tube: Γ vs k data for
H =5, Re = 0 and Σ = 0.

stress difference in base state present for a neo-Hookean solid (Gkanis & Kumar
2003, 2005), and is stabilized by the presence of interfacial tension at the fluid–solid
interface. The first normal stress difference in the base state is zero in the linear elastic
approximation and thus this high wavenumber instability is absent for flow in the
extrapolated linear elastic deformable model. Figure 3 presents the neutral stability
data in Γ −k plane for H =5 for the normal stress-driven instability. We have verified
that the neutral curves for high wavenumber instability remain largely independent of
solid thickness. This is because the short-wavelength fluctuations remain localized near
the interface and decay rapidly away from the interface. Another important feature
to note in figure 2 is that the finite wavenumber (nominally k ∼ O(1); practically
0.1 <k < 5) perturbations do not become unstable for any value of Γ . Figure 2 in
fact shows that increase in Γ has a stabilizing effect on finite wavenumber fluctuations
for flow through a neo-Hookean tube. In contrast, for the extrapolated linear elastic
model (Kumaran 1995), the flow remains stable for lower Γ = 0.1, 0.5 values and with
increase in Γ to O(1) (and higher) the flow becomes unstable for finite wavelength
perturbations. The linear elastic approximation does not take into account the effect
of finite base-state strain (Γ ∼ O(1); refer (2.8)) in the solid medium while the neo-
Hookean model incorporates the effect of base state of the solid via the different
coupling terms between fluctuations and base state present in governing equations of
the deformable wall and interfacial conditions. Thus, the more accurate neo-Hookean
model predicts that the finite-k instability is absent in a deformable tube in the
creeping-flow limit. We have verified using our spectral numerical solution that the
finite wavenumber unstable mode is absent for H � 100 and Γ � 100.

Indeed, a similar trend was already present in the earlier results of Gkanis & Kumar
(2005) for pressure-driven flow in a two-dimensional channel with neo-Hookean walls,
where it was shown that the finite-k instability is absent for H < 10, while for plane-
Couette flow past a neo-Hookean solid, the finite-k instability was present for any H .
Thus, pressure-driven flows in a two-dimensional neo-Hookean channel are harder
to destabilize compared to plane-Couette flow. The present results show that the
stabilizing effect is even more dramatic in the case of pressure-driven flow in a
neo-Hookean tube wherein there is no finite-k instability for any value of H in the
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Figure 4. Eigenvalue spectrum showing unstable upstream modes at Re = 0.001 and k = 0.01
for a neo-Hookean tube: data for H = 9, ηr = 0 and Σ =0, for different values of Γ .

creeping-flow limit. Thus, in the creeping-flow limit and in the absence of surface
tension, the critical mode is the short-wave instability arising because of the first
normal stress difference in base state for neo-Hookean solid. To understand the
mechanism behind the stabilization in a neo-Hookean tube in the creeping-flow limit,
we carry out in Appendix B an analysis similar to the one by Gkanis & Kumar
(2003), based on the growth of interfacial fluctuations and various contributions
which destabilize or stabilize this growth. It is useful to end this section with an
estimate of various parameters for which the short-wave instability could be realized
in an experiment. If we consider a deformable tube of radius 10−4 m, V = 0.1 m s−1,
η =1 Pa·s, then figure 3 shows that Γ � 2, implying G � 500 Pa in order for the
normal stress-induced instability to be realized. Thus, the high-wavenumber instability
is expected to be present only in the case of flow of highly viscous liquids in very soft
tubes.

3.2. A new instability at low Re and low wavenumbers

The short-wave instability discussed above for Re = 0 continues to finite Reynolds
number and the critical Γ required to destabilize the system remains an O(1) quantity.
On the other hand, it was demonstrated in earlier studies using the linear elastic
approximation (Shankar & Kumaran 2001) that the finite-k viscous mode is the most
unstable mode in creeping-flow limit as well as in low (but non-zero) Re regime. In
the present section we investigate the effect of introducing small but finite Re on
the stability of flow in a neo-Hookean tube. Specifically, we address the following
questions: Will the disturbances with wavelengths other than short waves become
unstable in the limit of low Reynolds number? If so, will they alter the critical
conditions required to destabilize the system? An important difference between the
characteristic equations at Re = 0 and Re �= 0 is that for Re �= 0, the characteristic
equation admits multiple solutions to c unlike the creeping-flow limit where the
characteristic equation was quadratic in c and admits only two solutions for the wave
speed. To this end, we used the Chebyshev spectral collocation method (Boyd 1989;
Weideman & Reddy 2000) to explore different wavenumber regimes at low Reynolds
number.

Figure 4 shows the eigenspectrum for Re = 0.001 and k = 0.01 at different values of
Γ for a neo-Hookean tube. It shows that there are multiple solutions for the eigenvalue
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Figure 5. Neutral stability data for upstream low-Re, low-k instability in a neo-Hookean
tube: Γ vs k for H = 9, ηr =0, Σ = 0 and different Re.

c, approximately half of which are downstream travelling waves (eigenvalues with
positive real part) and other half are upstream travelling waves (eigenvalues with
negative real part). The eigenspectrum in figure 4 shows that for Γ = 0.03, all
eigenmodes are stable. When Γ is increased to 0.08, one of the upstream travelling
modes becomes unstable. On further increase in Γ to 0.3, more upstream travelling
modes become unstable. It is also observed that the slowest upstream travelling wave
(eigenvalue with smallest magnitude of the real part of c) becomes unstable first as
the non-dimensional velocity Γ is increased, followed by the upstream wave with
next higher wave speed. We adopt the following nomenclature scheme for labelling
the modes. The slowest upstream travelling mode is labelled as ‘mode-1u’ and other
upstream modes are designated as ‘mode-2u’, ‘mode-3u etc., in increasing order of their
wave speeds. Figure 4 also shows that the downstream modes do not become unstable
for any value of Γ . We have verified that this trend persists for different values of Γ

and H for low Reynolds number. In fact, as Γ is increased, the downstream modes
become further damped indicating the stabilizing effect of Γ on downstream travelling
waves. Recall that increase in Γ was also stabilizing for the finite wavenumber viscous
mode in the creeping-flow limit, which was also a downstream travelling mode. It is
shown later in § 3.4 that downstream travelling modes can become unstable only for
Re ∼ O(100) or higher. It must be mentioned here that unstable upstream travelling
modes were also found in the works of Gkanis & Kumar (2003, 2005, 2006) in the
creeping-flow limit for flow in planar geometries.

Figure 5 presents the neutral stability data in Γ –k plane for the first upstream
mode (mode-1u) for different Reynolds number. These neutral curves clearly indicate
that flow can become unstable for different bands of wavenumbers ranging from
O(0.001) to O(0.1) depending on the value of Re. This figure also shows that the
neutral stability curves keep shifting towards low-k regime with decrease in Reynolds
number. The critical Γ (minimum of a given neutral curve) remains independent of
Re while the critical wavenumber ‘kc’ decreases with decrease in Reynolds number.
We plot the critical conditions (Γcrit , kc and cr ) as a function of Re (figure 6), and
observe that Γcrit ∼ O(1), kc ∼ Re1/2 and wave speed cr ∼ Re−1. We have also verified
that the Γ –k neutral curves for second upstream mode (mode-2u) show similar
qualitative features and identical scalings as mentioned above. These results are in
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Figure 6. Scaling of different variables with Re for the upstream low-Re instability in a
neo-Hookean tube: critical conditions as a function of Re for H = 9, ηr = 0 and Σ = 0.

stark contrast to earlier studies of using the linear elastic approximation where the
upstream travelling waves always remain stable for any value of Re and Γ . Thus,
this instability of upstream modes for low Re and low wavenumbers must be a
consequence of the different couplings between base-state deformation of solid and
fluctuations that are present in the governing equations (2.13)–(2.15) and interfacial
conditions (2.18) and (2.19) for a neo-Hookean solid model.

It is also of interest here to examine whether the instability is convective or absolute
in nature. To this end, the group velocity of the most unstable modes in the spatial
stability analysis can be determined from the temporal stability analysis through
(Drazin & Reid 1981) cg = − ∂(kcr )/∂k, where cg is the group velocity, and cr is the
real part of the wave speed. We calculated the group velocity of the most unstable
mode for the new class of unstable modes and the following trend was observed.
When Re is finite, the group velocity is always finite for the most unstable mode,
indicating that the instability is of convective nature. However, as Re → 0, the group
velocity tends to zero for the most unstable mode, suggesting that the instability
could be absolute in nature in this special limit. When Re is finite, the sign of the
group speed and phase speeds are same for smaller Re < 1, but could be opposite for
larger Re > 1. Thus, at any finite Re, the instabilities predicted here are expected to
be convective in nature.

3.3. Asymptotic analysis in the limit Re � 1, k ∼ Re1/2

To better understand this new class of multiple unstable modes, we perform an
asymptotic analysis in the limit of low Reynolds number to investigate the effect of the
different coupling terms in the neo-Hookean tube that could destabilize the upstream
travelling waves. The preceding results suggest that Re1/2 is a natural candidate for
the small parameter of the asymptotic analysis. As mentioned in § 2, the parameter
Re always appears through the combination Re/Γ , and we find it convenient to
use the small parameter ε ≡ (Re/Γ )1/2. Since Γ ∼ O(1), this is equivalent to using
Re1/2. Based on the numerically obtained scalings shown in figure 6, we assume that
Γ ∼ O(1), k = k0ε where k0 ∼ O(1) is the scaled non-dimensional wavenumber and the
complex wave speed is expanded in a series as

c =
1

ε2

(
c(0) + εc(1) + · · ·

)
. (3.1)
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This scaling of the wave speed c = c∗/(GRtube/η) can be verified to be equivalent
to the scaling of shear waves in a solid of finite thickness (Achenbach 1973) for
which the dimensional wave speed c∗ is proportional to (G/ρ)1/2(k∗Rtube)

−1, and after
noting that for the present class of modes, k∗Rtube ∼ ε � 1. We set ṽr ∼ O(1), thus
fluid continuity equation (2.10) and z-momentum equation (2.11) imply ṽz ∼ O(ε−1)
and p̃ ∼ O(ε−2), respectively. Thus, the velocities and pressure in the liquid layer are
expanded as

ṽr = ṽ(0)
r + εṽ(1)

r + ε2ṽ(2)
r + · · · , (3.2)

ṽz = ε−1
(
ṽ(0)

z + εṽ(1)
z + ε2ṽ(2)

z + · · ·
)
, (3.3)

p̃ = ε−2
(
p̃(0) + εp̃(1) + ε2p̃(2) + · · ·

)
. (3.4)

The normal velocity continuity condition indicates that w̃R ∼ O(ε) at r = 1. We assume
that w̃R ∼ O(ε) in the bulk of the solid as well. Thus, w̃Z ∼ O(1) and p̃s ∼ O(ε−1)
according to the solid continuity equation (2.13) and z-momentum balance (2.13),
respectively. The deformation and pressure fields in solid are then expanded as

w̃R = ε
(
w̃

(0)
R + εw̃

(1)
R + · · ·

)
, (3.5)

w̃Z =
(
w̃

(0)
Z + εw̃

(1)
Z + · · ·

)
, (3.6)

p̃s = ε−1
(
p̃s

(0) + εp̃s
(1) + · · ·

)
. (3.7)

The above expansions for the fluid eigenfunctions (3.2)–(3.4), solid eigenfunctions
(3.5)–(3.7) and k = k0ε are substituted in governing equations (2.10)–(2.15) and
boundary conditions (2.16)–(2.21) to obtain the set of equations governing the problem
at different orders in ε. The ordinary differential equation (ODE) governing the leading
order ṽr is

L2
r ṽ

(0)
r = 0, (3.8)

where Lr ≡ (d2
r + r−1dr − r−2). The interfacial conditions (r = 1) at leading order

O(ε0) are

ṽ(0)
r = −ik0c

(0)w̃
(0)
R , ṽ(0)

z = −ik0c
(0)w̃

(0)
Z , dr ṽ

(0)
z = 0, p̃(0) = 0. (3.9)

The conditions at R = 1 + H are simply

w̃
(0)
R = 0, w̃

(0)
Z = 0 (3.10)

and the conditions at tube centre r =0 are finiteness of ṽ(0)
r , ṽ(0)

z and p̃(0). The ODE
(3.8) can be solved for ṽ(0)

r as

ṽ(0)
r = A1r + A2r

3 + A3/r + A4 ln r, (3.11)

where the constants A3 and A4 vanish because of the finiteness of ṽ(0)
r at the centre

(r = 0) of the tube. While solving for leading-order fluid eigenfunctions, the tangential
and normal stress balances (3.9) reduce to dr ṽ

(0)
z = − 8A2/k0 and p̃(0) = 16iA2/k2

0 ,
respectively. Thus, these two conditions yield the same equation, i.e. A2 = 0. Therefore,
the leading-order eigenfunctions for the fluid are

ṽ(0)
r = A1r, ṽ(0)

z =
2A1

k0

, p̃(0) = 0, (3.12)

and they are obtained independently of solid layer deformation field. Physically, to
leading order, there is a uniform oscillatory perturbation flow in the z-direction. An
important point to note is that the leading-order tangential and normal stresses in the



Stability of fluid flow through deformable neo-Hookean tubes 305

fluid are zero at r = 1. This is because the stresses in deformable solid wall are O(ε)
smaller than the stresses in the fluid. However, the leading-order deformations in the
solid are coupled to the leading-order flow in fluid through normal and tangential
velocity continuity conditions (3.9). The equations governing the solid at leading order
are

(dR + R−1)w̃(0)
R + k0w̃

(0)
Z = 0, (3.13)

−ik0p̃s
(0) +

(
d2

R + R−1dR

)
w̃

(0)
Z = −k2

0c
(0)2

0 w̃
(0)
Z , (3.14)

dRp̃(0)
s = 0. (3.15)

The above set of equations can be solved to give

w̃
(0)
R = G1R + G2/R + G3J1

(
k0c

(0)R
)

+ G4Y1

(
k0c

(0)R
)
, (3.16)

where J1 and Y1 are, respectively, the Bessel functions of first and second kind and
G1, G2, G3 and G4 are constants of integration. The leading-order stress conditions
(3.9) and the condition of finiteness of ṽ(0)

r were used to determine constants A2, A3 and
A4 while the remaining two velocity continuity conditions (3.9), and zero-displacement
conditions (3.10) are still to be used to evaluate the other remaining constants and
leading-order wave speed c(0). However, note that we are left with four boundary
conditions while we need to evaluate four constants G1, G2, G3 and G4 (since, A1

can be arbitrarily specified because the resulting system of equations is linear and
homogeneous) along with c(0). Thus, the leading-order conditions are insufficient to
determine leading-order wave speed c(0) and it is required to solve for higher order co-
rrections for fluid and solid. The ODE governing the O(ε) correction for the fluid is

L2
r ṽ

(1)
r = 0, (3.17)

and the interfacial conditions at O(ε) are

ṽ(1)
r = −ik0

(
c(0)w̃

(1)
R + c(1)w̃

(0)
R

)
, (3.18)

ṽ(1)
z = −ik0

(
c(0)w̃

(1)
Z + c(1)w̃

(0)
Z

)
, (3.19)

dr ṽ
(1)
z = dRw̃

(0)
Z , (3.20)

p̃(1) = p̃(0)
s . (3.21)

The solution to the first correction ṽ(1)
r is obtained by solving (3.17) as

ṽ(1)
r = A2r

3, ṽ(1)
z = −4A2

k0

r2. (3.22)

Here, in the solution for ṽ(1)
r , we have retained only the eigenfunctions that remain

finite at r = 0. There is one more linearly independent solution proportional to r .
The constant multiplying this linearly independent solution is set to zero without
loss of generality, as this solution is already present at the leading-order solution ṽ(0)

r .
Equation (3.20) shows that the tangential stress due to first correction in the fluid
is balanced by leading-order tangential stress in solid. Similarly, the first correction
to fluid pressure is balanced by leading-order pressure in solid (3.21). Recall that
the tangential and normal stresses in solid wall do not appear in the leading-order
boundary conditions (3.9). This is because the stresses in the solid layer are O(ε)
smaller than those in the fluid.

Further analysis reveals that the leading-order wave speed can be determined
by substituting the fluid eigenfunctions correct to O(ε) and leading-order solid
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eigenfunction in leading-order velocity continuity conditions (3.9), stress continuity
conditions at O(ε) (3.20) and (3.21) and (3.10). This results in a system of linear
homogeneous equations which can be represented as M · CT = 0 , where C is the vector
of constants: {A1, A2, G1, G2, G3, G4}. The characteristic equation is obtained by
setting det[M] = 0. There are multiple solutions for c(0) all of which are real, and could
be positive or negative. This indicates that in the leading-order approximation, the
perturbations are neutrally stable waves travelling in both upstream (with c(0) negative)
and downstream directions (with c(0) positive). The various couplings between base-
state deformation and fluctuations in the neo-Hookean solid do not appear yet in the
calculation of c(0). Thus, the leading-order wave speed will be identical even if one uses
the linear elastic model to describe the deformation field in the solid wall. Because
the system is neutrally stable up to this level of approximation, it is necessary to
calculate the next correction to the wave speed c(1) in order to determine the stability
of the system. Subsequent analysis shows that we require the second correction to
fluid eigenfunctions and first correction to solid eigenfunctions in order to determine
c(1). The ODE governing the second-order correction to fluid velocity field is

LrLr ṽ
(2)
r = −ik0c

(0)Lṽ(1)
r . (3.23)

The solution to the above equation for ṽ(2)
r is obtained as

ṽ(2)
r = − ik0c

(0)A2

24
r5. (3.24)

The equations governing the first correction to the solid eigenfunctions are

(dR + R−1)w̃(1)
R + k0w̃

(1)
Z + 2ik0Γ Rw̃

(0)
R = 0, (3.25)

4iΓ (dR + R−1)w̃(0)
R − ik0p̃s

(1) +
(
d2

R + R−1dR

)
w̃

(1)
Z

= −k2
0

(
c(0)2w̃

(1)
Z + 2c(0)c(1)w̃

(0)
Z

)
, (3.26)

−2Γ Rk0p̃
(0)
s + 4iΓ dRw̃

(0)
Z + idRp̃(1)

s = 0. (3.27)

These are solved to give the following expression for w̃
(1)
R :

w̃
(1)
R =

[
2iΓ k0 + k2

0c
(0)c(1)

k0c(0)

] (
G1RJ0

(
k0c

(0)R
)

+ G2RY0

(
k0c

(0)R
))

− G3iΓ k0R
3. (3.28)

Here, J0 and Y0 are, respectively, the Bessel functions of the first and second kind.
Further analysis reveals that the tangential and normal stress conditions at O(ε2)

along with velocity continuity condition for O(ε) at r = 1 and w̃
(1)
R = w̃

(1)
Z = 0 at

R =(1 + H ) are required to determine first correction to wave speed. The tangential
and normal stress balance at O(ε2) are

dr ṽ
(2)
z − k0ṽ

(0)
r = −2iΓ dRw̃

(0)
R + dRw̃

(0)
Z , (3.29)

p̃(2) + 2idr ṽ
(0)
r = p̃(1)

s . (3.30)

It is important to mention here that the different coupling terms (terms enclosed in
boxes in above equations) due to the neo-Hookean solid appear in the O(ε) correction
to solid governing equations (3.25)–(3.27) and in O(ε2) correction in tangential stress
balance (3.29). Thus, it is expected that these couplings will affect the first correction
to the wave speed. The coupling due to the first normal stress difference in base state,
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Figure 7. Asymptotic results for the unstable upstream mode in neo-Hookean tubes: neutral
stability data for mode-1u for different H and Σ = 0 and ηr = 0.

which occurs in the tangential stress balance (the term 4Γ 2kw̃R in (2.18)) and was
crucial for the short-wave instability, is however absent in tangential stress condition
at O(ε2) and will not affect the stability of this new class of modes. The solution to the
O(ε2) correction to fluid eigenfunctions and O(ε) correction for solid eigenfunctions
are given in (3.24) and (3.28), respectively. These are substituted in the boundary
conditions (2.16)–(2.21). As mentioned earlier, the characteristic equation is obtained
by setting the det[M] = 0 and this determinant is expanded in a power series in ε.
The leading-order term of this series yields c(0). The O(ε) correction of determinant is
used to evaluate c(1) and it turns out that c(1) is purely imaginary. The flow is stable
(unstable) if c(1) < 0 (c(1) > 0). As already mentioned, that there are multiple solutions
for c(0) and these can be either with positive (downstream modes) or negative signs
(upstream modes). For each of these c(0), there is a unique first correction c(1) which
determines the stability of that mode. The expression for c(1) shows that the upstream
travelling waves become unstable when Γ is increased above a critical value for the
neo-Hookean solid. The effect of increasing Γ was found to be always stabilizing for
the downstream travelling waves. When a linear elastic solid is used, the additional
coupling terms (i.e. the terms enclosed in boxes in the above equations) in the solid
are absent, and the first correction c(1) is always stable. Thus, the instability of the
upstream modes is purely a consequence of the nonlinear neo-Hookean model for the
solid.

The condition c(1) = 0 can be used to solve for Γ in order to determine the neutrally
stable modes. The results for neutral modes obtained from asymptotic analysis were
compared with our numerical results and both are found to be in excellent agreement.
Recall that the upstream modes were labelled as ‘mode-1u’,‘mode-2u’ and so on, in
increasing order of their wave speeds and the slowest upstream travelling mode is the
first one to become unstable as Γ is increased. The asymptotic results also confirm
that the first upstream mode is most easily destabilized with increase in base-state
velocity. Figure 7 shows neutral curves for mode-1u in Γ − k0 plane for different
values of H. The critical Γ decreases progressively with increase in solid thickness.
Our results show that the critical Γ does not asymptote to a constant value for either
H � 1 or H � 1. This behaviour is very different from the creeping-flow viscous
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mode of Kumaran (1995), where the critical Γ asymptotes to a constant O(1) value
at H � 1 and H � 1. A decrease in critical Γ with H for a neo-Hookean solid, and
a plateau for a linear elastic solid, was also seen in the context of free-surface flow
down an inclined plane lined with a soft deformable layer by Gkanis & Kumar (2006).
We have further verified using our numerical solutions that the scaling assumptions
made in the asymptotic analysis for various dynamical variables are consistent with
the numerical solution.

The above asymptotic analysis shows that the upstream travelling waves can become
unstable in the limit of low Reynolds number for flow through a neo-Hookean tube,
but are stable in a linear elastic tube. It is useful to compare the prediction of critical Γ

from the two solid models (linear elastic and neo-Hookean) even though the physical
nature of unstable modes predicted by two models is entirely different. For example,
the linear elastic model predicts the instability of finite wavenumber downstream
modes while neo-Hookean solid predicts unstable low-k upstream modes. Kumaran
(1995) showed that the Γcrit → 0.7685 for H � 1 and Γcrit → 4.109 for H � 1 for
flow through a linear elastic deformable tube in limit of zero Reynolds number. Even
for small but finite Reynolds number, previous studies (Shankar & Kumaran 2001)
have shown that the critical Γ predicted by using linear elastic model are close to
the predictions in the creeping-flow limit, wherein Γcrit approaches an O(1) constant
as H � 1. However, one expects that Γcrit should diverge as H → 0, because one
approaches the limit of a rigid wall for H = 0. Figure 7 shows that the nonlinear neo-
Hookean model correctly recovers this qualitative expectation viz. Γcrit progressively
increases with decrease in solid thickness. This prediction is in qualitative agreement
with the correlation Γcrit ∝ H −1 reported in the experiments by Krindel & Silberberg
(1979).

We end this section with some estimates of the non-dimensional parameters where
the low-Re, low-k instability could be realized. For Re ∼ O(1), figure 8 shows that
Γcrit ∼ 0.05 for H = 9. If we set η ∼ 10−3 Pa·s, Rtube ∼ 10−6 m, V = 1 m s−1, then
G ∼ 2 × 104 Pa. Instead, if we use a more viscous liquid and a larger tube radius,
η = 1 Pa·s, Rtube ∼ 10−3 m, V = 1 m s−1, then G ∼ 2 × 104 Pa in order for the flow
to be unstable. Soft solids with G ∼ 104 Pa can be fabricated using acrylamide
or polydimethyl siloxane (PDMS), as has been done in earlier experimental studies
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(Kumaran & Muralikrishnan 2000; Eggert & Kumar 2004), and the above predictions
can be tested in such systems.

3.4. Unstable modes at high Re

In this section, we examine whether the unstable upstream modes analysed above
in the low-Re regime continue to intermediate and high Reynolds number. Earlier
studies have shown that there exist a set of downstream travelling wall modes which
become unstable in the limit of high Reynolds number for flow through linear elastic
deformable tubes (Shankar & Kumaran 2001). Here, we explore that whether a
similar class of unstable wall modes exist for flow through a neo-Hookean flexible
tube, and if they exist, how the stability behaviour of these modes is modified due to
the nonlinear rheological behaviour of neo-Hookean solid.

First it is useful here to recall the nature of stability of fluid flow in a rigid tube
at high Reynolds number. In the high-Re limit, there are two class of modes in the
stability of flow in a rigid tube, wherein the vorticity of the disturbances is confined
to thin regions near the centre of the tube or at the wall. The vorticity of the ‘centre
modes’ are confined to a region of thickness of O(Re−1/4) near the centre, while the
vorticity of the ‘wall modes’ is confined to a region of thickness O(Re−1/3) near the
wall. Both these modes are always stable in a rigid tube (Corcos & Sellars 1959; Gill
1965). There have also been many numerical studies (Davey & Drazin 1969; Garg &
Rouleau 1972) on the stability of parabolic pipe flow and all these have concluded
that the flow is stable to small disturbances at all Reynolds numbers. However, there
remains the possibility of non-modal transient algebraic (non-exponential) growth of
disturbances for flow in a pipe (which eventually decay exponentially) even within
the linear stability theory. During the transient growth phase, small perturbations
can be amplified up to a stage where nonlinear effects can become important in the
transition to turbulence (Schmid & Henningson 2001).

We first focus our attention on the continuation of upstream unstable travelling
modes to high Reynolds number. Figure 8 shows the variation of critical Γ with
Re for the first upstream mode for two different values of solid thickness. There
are, of course, more unstable upstream modes, but we verified that they show similar
qualitative behaviour and thus, the results are shown only for first upstream travelling
mode. Moreover, mode-1u is the most unstable mode in the limit of low Reynolds
number. The figure shows that the critical Γ remains largely independent of Reynolds
number for Re � 1 which is consistent with the asymptotic results presented in § 3.2.
This mode continues to high Reynolds number and Γ decreases as Re−1/3 for Re � 1.
The scaling of Γ with Re for these upstream modes is identical to the scaling shown
by unstable downstream wall modes in Shankar & Kumaran (2001). We will show a
little later that these upstream modes at high Re also correspond to the class of wall
modes described in Shankar & Kumaran (2001). For a linear elastic tube, however,
the upstream modes do not become unstable for any value Re, H and Γ . Figure 8
also shows that the effect of decreasing H is stabilizing at both low- and high-Re

regimes.
Figure 9 shows the eigenspectrum for H = 9, k = 1 and Re = 20 000 for different

values of Γ . For Γ =0.001, all the eigenmodes remain stable. As Γ is increased
to 0.005, one of the downstream travelling modes become unstable. With further
increase in Γ more downstream travelling modes become unstable and for Γ = 0.05,
both downstream as well as upstream travelling modes become unstable. These
unstable modes are numerically continued to both high- and low-Re regime. As
mentioned above, the upstream travelling modes continue to the low-k instability
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Figure 9. Eigenvalue spectrum illustrating different downstream and upstream unstable
modes at high Reynolds number in a neo-Hookean tube: data for H = 9, k = 1, Re =20 000,
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Figure 10. Neutral modes showing two different classes of unstable downstream modes with
Γcrit ∼ Re−1/3 and Γcrit ∼ Re−1 at high Re in a neo-Hookean tube: data for H = 9, k = 1, ηr = 0
and Σ = 0.

in the limit of low Reynolds number (see figure 8). The continuation of unstable
downstream modes reveal that there are two different class of modes based
on the scaling of Γ with Re in high-Re regime (figure 10). There is one set of
unstable downstream travelling modes which shows the scaling behaviour Γ ∼ Re−1/3

while the second set of downstream modes exhibits Γ ∼ Re−1. The latter scaling
corresponds to a class of modes termed as ‘inviscid modes’ (Shankar & Kumaran
2000) where fluid inertial stresses are of the same order as elastic stresses in the solid.
We have verified that among these two classes of modes, the first set of downstream
modes (Γ ∼ Re−1/3) is most easily destabilized for all Reynolds number ranges of
practical interest (Re < 104). The inviscid mode corresponding to scaling Γ ∼ Re−1 is
critical only for Re ∼ O(10 000) or higher. Thus, we focus our attention on the modes
for which Γ ∼ Re−1/3. We have further verified that this unstable mode with Γ ∼ Re−1

is present only in a neo-Hookean tube, and is absent in linear elastic tubes.
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Figure 11. Variation of critical Γ with Re for first upstream mode and first three
downstream modes in a neo-Hookean tube: data for H = 9, ηr = 0 and Σ = 0.

Figure 10 shows that there are multiple unstable downstream modes for which
Γ ∼ Re−1/3. These modes are labelled as mode-1d, mode-2d, etc., in increasing order
of the magnitude of real part of their wave speeds. Thus, mode-1d corresponds to
the slowest travelling downstream mode. The scaling Γ ∼ Re−1/3 shown by these
downstream and upstream travelling modes in the high-Re limit suggests that these
modes correspond to the class of wall modes described in Shankar & Kumaran
(2001). To ascertain this, we carried out an asymptotic analysis similar to Shankar &
Kumaran (2001) for the case of flow in a neo-Hookean tube, with Re−1/3 as a small
parameter. Our analysis shows that to leading order, the governing stability equations
for the neo-Hookean solid are identical to those for the linear elastic solid, and
the wave speed thus determined is therefore identical to the results of Shankar &
Kumaran (2001). There are multiple solutions to the leading-order wave speed c(0),
all of which are real, but with both positive and negative signs corresponding to
downstream and upstream travelling modes. The numerical results for the wave speed
corresponding to the neutral data of figures 8 and 10 agree very well with our
asymptotic predictions. The asymptotic results for the two solid models, however,
differ in the calculation of first correction c(1), because the additional coupling terms
(proportional to Γ ) in the neo-Hookean solid appear at this order. While only the
downstream modes are destabilized in the linear elastic tube, in the neo-Hookean
tube, both upstream and downstream modes are destabilized.

Figure 11 shows the variation of critical Γ with Reynolds number for the first
three downstream and the first upstream travelling wall modes. It shows that for
Re � O(100), mode-1d becomes unstable first followed by other downstream and
upstream travelling modes. The continuation of downstream modes to lower Reynolds
number show that they remain stable below Re ∼ O(100). This is in contrast with
the earlier results obtained using the extrapolated linear elastic model where all
downstream wall modes continue to the low-Re limit and the first downstream mode
continues to the creeping-flow viscous mode. Thus, figure 11 shows that for flow
through a neo-Hookean deformable tube, the first upstream mode becomes unstable
first from Re � 1 to Re < 100, and for Re ∼ O(100) and higher, the first downstream
wall mode is most easily destabilized. Figure 12 represents the effect of decreasing solid
thickness on critical Γ for Re ∼ O(1000) for first two downstream wall modes. This
shows that for a given Re, the effect of decreasing solid thickness is stabilizing and the
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Figure 13. Variation of critical Γ with Re for the first upstream mode and downstream
modes for plane-Couette flow past a neo-Hookean deformable wall: Γcrit vs Re data for
H =10, ηr = 0 and Σ = 0. Figure shows that the curve corresponding to downstream mode for
the neo-Hookean model agrees very well with the results from the extrapolated linear elastic
model. The neutral curve for the upstream mode is absent in the extrapolated linear elastic
model.

downstream wall mode instability vanishes for H ∼ O(0.1). At higher values of solid
thickness, Γcrit decreases with H , in agreement with the experimental observations of
Krindel & Silberberg (1979).

It is useful to compare the above results for pipe-Poiseuille flow in a neo-Hookean
tube with those for plane-Couette flow past a neo-Hookean wall. The stability
characteristics of both these geometries have many similarities in rigid channel. For
example, both are linearly stable at all Re and both lack the critical layer singularity
required for Tollmein–Schlichting instability. Even for flow past a deformable wall
modelled with the linear elastic approximation, these flows have similar stability
characteristics (Srivatsan & Kumaran 1997; Kumaran 1998a). Figure 13 shows the
variation of critical Γ with Re for first upstream and downstream modes for plane-
Couette flow past a neo-Hookean deformable solid medium. In the limit of high Re,
both upstream and downstream wall modes behave similar to the pipe-Poiseuille flow
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Figure 14. Effect of non-zero solid viscosity ηr on the first upstream and downstream modes
in a neo-Hookean tube: Γcrit vs Re for H = 5 and Σ = 0.

in deformable tube. For example, Γ ∼ O(Re−1/3) for Re � 1 and the examination of
eigenfunctions in high-Re limit for these two modes reveal that both these modes
correspond to the wall modes described in Shankar & Kumaran (2001). However,
the continuation of these modes to low-Re limit shows that the stability behaviour of
upstream and downstream travelling modes for plane-Couette flow is quite different
from pipe-Poiseuille flow. The first downstream mode continues to low-Re limit
and Γ ∼ O(1) while the critical Γ for upstream mode diverges for Re � 1. On the
other hand, for the pipe-Poiseuille case, figure 11 shows that it is the first upstream
mode that continues to the low-Re limit, while the downstream modes remain stable
for Re � O(100). Moreover, for Re = 0, plane-Couette flow becomes unstable for
finite wavenumber perturbations when Γ increases above a critical value unlike
pipe-Poiseuille flow where the finite wavenumber fluctuations always remain stable.
Figure 13 also shows that, for the most unstable mode, the predictions of both the
solid models agree very well at all Reynolds number for plane-Couette flow, in marked
contrast with pipe-Poiseuille flow. Our results thus show that while the extrapolated
linear elastic model seems adequate to predict instabilities in plane-Couette flow (for
solids with H � 1), for pipe-Poiseuille flow it is imperative to use a nonlinear solid
model at any value of solid thickness H .

3.4.1. Effect of dissipation in the solid

The results presented thus far are for purely elastic neo-Hookean solid with ηr = 0.
Figures 14 and 15 show the effect of non-zero ηr on the first upstream and downstream
modes for H = 5 and H = 9, respectively. They show the variation of critical Γ with
Re at different values of solid viscosity ηr . It can be observed that ηr has little
stabilizing effect for both the modes for high Reynolds number. For mode-1d, the
critical Reynolds number below which the instability vanishes increases gradually
with ηr . However, for mode-1u, the instability in the low-Re limit vanishes rapidly
with increase in ηr . For example, when ηr =0.1, the instability due to upstream
modes disappears for Re below O(1). When solid viscosity is further increased to 0.5,
the upstream mode instability is absent for Re <O(100). For non-zero ηr , therefore,
the flow through neo-Hookean deformable tubes does not become unstable in the
low-Reynolds-number regime and the critical Re above which flow could become
unstable increases with ηr . Thus, in the low to moderate Reynolds number regime,
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Figure 15. Effect of non-zero solid viscosity ηr on the first upstream and downstream modes
in a neo-Hookean tube: Γcrit vs Re for H = 9 and Σ = 0.

the critical Reynolds number is expected to be a sensitive function of ηr . The effect
of damping in a plate-spring model for a compliant wall has also been addressed in
Davies & Carpenter (1997) for pressure-driven flow in a channel. They found very
similar stabilization effect of damping on a class of modes termed as ‘travelling wave
flutter’. However, the travelling wave flutter modes arise in the inviscid limit (of high
Re) when there is a critical layer to generate a phase shift between the wall velocity
and the perturbation fluid pressure at the wall. For fully developed flow in a pipe
analysed in this work, there is no critical layer, and hence the modes analysed here
are very different from the travelling wave flutter modes.

3.4.2. Comparison with Krindel & Silberberg (1979) experiments

We now attempt to make contact with the earlier experimental results of Krindel &
Silberberg (1979) in light of our results. Their experiments used Rtube = 0.15 mm,
η = 10−3 Pa·s, H = 8.67, G = 320 Pa. Under these conditions, the transition Reynolds
number was experimentally reported to be 570. For this Re, the dimensional velocity
can be calculated to be 3.6 m s−1, and hence Γ for their conditions can be estimated
to be 0.7. The loss modulus of the solid (which is related to ηr ), however, was not
reported in their paper. We therefore compare their experimental data with our results
for ηr = 0. From our numerical results for H =9, figure 11 shows that for Re ∼ 600,
the critical Γ required is around 0.015 for ηr =0. For non-zero ηr , our numerical
results suggest that the critical Γ for instability will increase. Thus, according to
our results, the experiments of Krindel & Silberberg (1979) are well in the unstable
regime. Krindel & Silberberg (1979) also reported data for a different elastic solid
with G ∼ 1200 Pa. For this solid, the critical Reynolds number was experimentally
determined to be 870. The dimensional flow velocity for this Re can be calculated to
be 5.4 m s−1, and hence Γ for their experiments can be estimated to be around 0.03.
From our numerical results (figure 11), for Re ∼ 900, the critical Γ for instability is
around 0.01. Again, as per our results, the experiments are well in the unstable regime.
In addition, our numerical results at low and high Re indicate that Γcrit decreases
with increase in H for flow in a neo-Hookean tube, which is in qualitative agreement
with the conclusions of Krindel & Silberberg (1979). If a linear elastic model is
used (Kumaran 1995), this results in Γcrit being independent of H both for H � 1
and H � 1. While this exercise is not aimed at a conclusive quantitative comparison
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between our theoretical predictions and observations of Krindel & Silberberg (1979),
it certainly suggests a good degree of qualitative agreement between theory and
experiments.

4. Conclusions
The stability of Poiseuille flow in a neo-Hookean deformable tube was analysed

in different regimes of Reynolds number in order to investigate the implications of
using the nonlinear neo-Hookean constitutive relation for the solid on the stability
of the flow. In the absence of inertia (Re = 0) and flow (Γ = 0), there exists a
capillary instability of the liquid thread inside a soft elastic tube. The effect of flow
(by increasing Γ to non-zero values) on the capillary instability was found to be
stabilizing for neo-Hookean tubes, and destabilizing for the extrapolated linear elastic
model. In the creeping-flow limit and in the absence of interfacial tension, the non-
dimensional parameter Γ governs the stability of the system. The neo-Hookean solid
exhibits a first normal stress difference in the base state which gives rise to a short-
wave instability for Γ ∼ O(1) or higher. An important result in the creeping-flow limit
is the absence of the unstable finite-wavenumber mode for flow through neo-Hookean
tubes for any value of Γ and solid thickness H . This is in marked contrast with the
prediction of the extrapolated linear elastic model (Kumaran 1995) that creeping flow
becomes unstable for finite-wavenumber fluctuations as the velocity increases above
a critical value (Γ ∼ O(1) and higher). The use of a more rigorous neo-Hookean
model takes into account the finite base-state strain via the different coupling terms
that occur in the linearized governing equations and boundary conditions. These new
couplings drastically alter the stability characteristics in the creeping-flow limit for
flow in a tube. Interestingly, the predictions from the two models agree for thick
solids in the case of a plane-Couette flow.

For low, but finite Re, we predict a new class of multiple upstream travelling modes
in a purely elastic neo-Hookean tube which become unstable as Γ is increased above
a critical value. These unstable modes are absent in the linear elastic approximation.
The critical Γ for these modes remains independent of Re for Re � 1, but the
critical wavenumber scales as kc ∼ Re1/2, thus giving rise to a long-wave instability
at Re � 1. These upstream modes continue to the finite- and high-Re regime with
Γ ∼ O(Re−1/3) for Re � 1, and these correspond to the wall modes of Shankar &
Kumaran (2001). These upstream travelling modes, however, remain stable for the
extrapolated linear elastic model. In the high-Re regime, the neo-Hookean model also
predicts multiple unstable downstream travelling wall modes similar to the unstable
wall modes predicted in Shankar & Kumaran (2001) using the extrapolated linear
elastic model. However, numerical continuation of these downstream modes to lower
Re for a neo-Hookean tube revealed that they remain unstable only for Re >O(100).
On the other hand, for the extrapolated linear elastic model, the downstream wall
modes continue to the creeping-flow limit (Shankar & Kumaran 2001). Upstream
travelling modes are found to be critical for the instability in low- and finite-Reynolds-
number regime (Re <O(100)), while downstream wall modes are critical for Re � 1.
Upon inclusion of dissipation in the solid, the upstream modes are strongly stabilized
in the low-Re limit, while there is little effect of ηr on these modes in the high-Re

limit.
In conclusion, our study shows that the class of unstable modes of practical

interest to the stability of Poiseuille flow to axisymmetric disturbances in a neo-
Hookean tube corresponds to shear waves in the elastic tube, which are modified
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Figure 16. Surface-tension-driven instability in an elastic tube in the absence of flow: Σ vs
k data for Re = 0, Γ = 0. Result holds for both extrapolated linear elastic and neo-Hookean
solid models.

and destabilized by the fluid flow in different regimes of Reynolds number. Our
study also demonstrates that the use of a nonlinear model for the deformable tube
not only gives rise to quantitative changes in stability boundaries, but introduces a
qualitatively new instability which is absent in the extrapolated linear elastic model
and in plane-Couette flow past a deformable solid.

Appendix A. Capillary instability inside a deformable tube
In this appendix, we discuss a capillary-like instability of the liquid inside a

deformable tube with and without flow. The characteristic equation is quadratic in
the complex wave speed c for Re = 0 and Γ = 0. The liquid–solid interfacial tension
Σ is the only parameter which can affect the stability of the system in absence of
flow and inertia. One of the two roots of the characteristic equation becomes unstable
as Σ increases beyond a critical value while the second root remains highly stable,
independent of Σ . This instability of the first root of the characteristic equation is
essentially the capillary instability of the stationary liquid thread inside a deformable
elastic tube. This instability has been overlooked in the earlier literature (Kumaran
1995, 1998a , b; Shankar & Kumaran 2000) because of the neglect of the radial
curvature of liquid–solid interface in the linearized normal stress balance (2.19).
Figure 16 shows the neutral stability diagrams in Σ–k plane for the unstable root for
different values of solid thickness. For a given value of solid thickness H , the system
becomes unstable when surface tension increases beyond a critical value. As the solid
thickness is increased, the critical Σ required to destabilize the system decreases and
it asymptotes to a constant value Σ = 2 for an infinitely thick solid. The neutral
stability boundaries shift towards lower wavenumbers with increase in H and for
H � 1, the critical wavenumber approaches to zero. It is important to mention here
that for Γ = 0, the different couplings between perturbation variables and the base
state of solid in the governing equations (2.13)–(2.15) and interfacial conditions (2.18)
and (2.19) vanish and hence, the linearized stability equations obtained from either of
the solid models (neo-Hookean or linear elastic) will be identical. Thus, this surface-
tension-driven instability (for Γ =0) is independent of whether one uses a nonlinear
neo-Hookean model or simple linear elastic approximation.
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Figure 17. Effect of flow in neo-Hookean tube on surface-tension-driven instability:
Σ vs k data for H =5 and Re = 0.

Figure 17 shows the neutral stability curves (Σ vs k) for H = 5 and for different
values of Γ for a neo-Hookean tube. Recall that Γ is the non-dimensional maximum
velocity in the fluid, and thus, figure 17 shows the effect of flow on the surface-tension-
driven instability. The critical Σ required to destabilize the flow increases with Γ ,
indicating that the flow has a stabilizing effect on capillary instability. Note that for
Γ �= 0, the neo-Hookean model yields additional coupling terms in the linearized
equations when compared with the extrapolated linear elastic solid. Thus, we expect
that the effect of introducing flow (Γ �= 0) on capillary instability will be different in
the two solid models. As mentioned above, the linear elastic approximation will also
predict the surface tension-induced instability (identical to the neo-Hookean solid)
for Γ = 0. In contrast, the extrapolated linear elastic model is expected to predict a
decrease in critical Σ in presence of flow (Γ �= 0), as opposed to the neo-Hookean
solid model, for the following reason. It is known that the characteristic equation
for the flow in the linear elastic approximation tube is quadratic in c for Re =0 and
Γ has destabilizing effect on one of the roots of characteristic equation for finite
wavenumber (k ∼ O(1)) fluctuations (Kumaran 1995). We have verified by gradually
increasing Γ to non-zero values (for Σ �= 0) that the same root for c exhibits both
the capillary and the flow-induced finite wavenumber instability for the extrapolated
linear elastic model. Thus, introducing flow has an additional destabilizing effect on
the capillary instability and hence the linear elastic approximation predicts a decrease
in critical Σ with increase in Γ . This is exactly opposite to the prediction obtained
using the neo-Hookean model. We now estimate the parameter regime for which this
surface-tension-driven instability can be observed in experiments and real systems.
Figure 16 shows that Σ = σ/GRtube ∼ O(1) to trigger the capillary instability. For
viscous liquids, σ ∼ O(0.1) N m−1 and if we set G ∼ O(104) Pa then Σ ∼ O(1) implies
Rtube ∼ O(10−5) m. Thus, the capillary instability will be observed only for micron-
sized tubes. This may be of interest in blood flow in small veins and capillaries where
the radius is typically of O(10−6) m. While our geometry has finite wall thickness, a
capillary-like instability in blood vessels modelled as thin elastic membranes induced
by the tension in the membrane has been discussed by Alstrom et al. (1999).

It is instructive to compare and contrast the capillary instability of a liquid thread
inside a deformable elastic tube discussed above with the standard capillary instability
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of liquid threads. It is well known that a stationary inviscid or viscous liquid thread
suspended in vacuum is linearly unstable for any non-zero value of surface tension
for perturbations with k < 1 (Rayleigh 1878, 1892). Tomotika (1935) analysed the
effect of viscous ambient surroundings in the limit of negligible inertial forces and
demonstrated that the instability criterion remains unaltered by the presence of
a viscous ambient fluid. While the fluid thread surrounded by an infinite viscous
medium is unstable for long waves at any non-zero value of surface tension, the
liquid thread bounded by an infinite deformable elastic medium (H → ∞) becomes
unstable for k < 1 only when surface tension increases beyond a critical value (see
figure 16). In order to compare the case of a liquid thread in a deformable tube of
finite thickness with a liquid thread surrounded by an external fluid of finite extent,
we refer to the core-annular flow (CAF) configuration analysed by Preziosi, Chen
& Joseph (1989). Their results illustrate that in absence of inertia, CAF becomes
unstable due to capillary forces for k < 1 and the critical value of surface tension is
zero for CAF as well. On the other hand, figure 16 shows that, for stationary fluid
inside a deformable elastic tube of finite H , the fluid–solid interface becomes unstable
only for a limited range of wavenumbers when surface tension increases beyond
a non-zero critical value. Figure 17 shows that the effect of introducing base-state
velocity (Γ �= 0) is stabilizing on capillary instability in a neo-Hookean deformable
elastic tube. The non-zero base-state velocity implies that there exists an axial shear
flow in the fluid which results in an increase of critical Σ required for instability.
The stabilizing effect of axial shear flow on capillary instability of a liquid cylinder
has also been observed by Russo & Steen (1989). The fluid was set into axial motion
by application of an axial shear stress at the free surface. They observed an island
of stability for long waves (i.e. partial stabilization in the capillary range) above a
critical value of imposed shear stress. A similar stabilization of capillary instability
by interfacial shear has been observed by Preziosi et al. (1989) for CAF when the
less viscous fluid occupies less space and is located near the wall. The capillary
forces are always destabilizing for CAF irrespective of the viscosity ratio and the
placement of two fluids with respect to the pipe wall. The non-dimensional surface
tension parameter in their study was independent of velocity (or rate of shear) and
the effect of basic velocity profile was contained in Reynolds number. They showed
that for thin less viscous fluid near the wall, stable CAF can be achieved beyond a
critical Reynolds number where the capillary instability is stabilized by shear. Thus,
the capillary instability of liquid inside a deformable elastic tube is different from
capillary instability of liquid threads surrounded by another liquid in two ways: (i)
there exists a critical value of surface tension required for instability in the absence
of flow and (ii) the effect of flow on the capillary instability is stabilizing in a neo-
Hookean tube, while it could be destabilizing or stabilizing in a core-annular liquid
system depending on viscosity ratio and thickness ratio of the two liquids.

Appendix B. Mechanism of stabilization in neo-Hookean tubes
To understand the mechanism behind the stabilization in a neo-Hookean tube in

the creeping-flow limit, we now carry out an analysis similar to the one by Gkanis &
Kumar (2003). We analyse the velocity continuity conditions as this is the only place
where time dependence explicitly enters the problem for Re = 0

vr
′ =

∂wR
′

∂t
, (B 1)
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their sum, as a function of wavenumber k. Data for H = 5, Γ = 5, Re = 0, Σ = 0. Plot shows
that the sum of the integrals is always negative for low and finite wavenumbers. For high
wavenumbers, the sum becomes positive because of the high-k instability.

vz
′ − 2Γ wR

′ =
∂wZ

′

∂t
, (B 2)

where primes denote perturbation variables. Multiplying (B 1) by wR
′ and (B 2) by

wZ
′, adding the resulting equations and averaging over one wavelength of instability

yields

1

2

∂

∂t

[
1

λ

∫ λ

0

(w′2)dZ

]
=

1

λ

[∫ λ

0

wR
′vr

′dZ

+

∫ λ

0

wZ
′vz

′dZ +

∫ λ

0

[
−2Γ wR

′wZ
′dZ

]]
. (B 3)

The left-hand side of (B 3) represents the time rate of change of magnitude of the
position of perturbed interface. The right-hand side denotes the various physical
contributions which add up to give the rate of change of magnitude of the perturbed
interface location. The contribution of a given integral on the right-hand side is
stabilizing (destabilizing) if it is negative (positive). The flow is stable (unstable) if sum
of the three integrals on the right-hand side is negative (positive). The first integral on
the right-hand side represents the interaction of normal velocity and normal interface
fluctuations; the second integral represents the interaction of horizontal velocity
fluctuation with horizontal interface fluctuation and the third integral represents the
effect of mean flow (−2Γ wR

′) on the horizontal interface deflection.
Figure 18 presents the data for each of the three integrals in (B 3) for H =5

and Γ = 5, for a neo-Hookean tube. We first focus our attention on finite
wavelength fluctuations (k ∼ O(0.1 − 10)). The sum of the three integrals on right-
hand side remains negative for k ∼ O(0.1 − 10) indicating that the flow is stable
for perturbations corresponding to these wavenumbers, in agreement with the linear
stability calculations. The major contribution in the right-hand side comes from the
second and third integrals. For lower wavenumbers, the second integral is positive and
third is negative, while for k > 1 the second integral is negative and third is positive.
Our numerical calculations show that the sum of second and third integrals is negative
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Figure 19. The three integrals on the right-hand side of (B 3) for the linear elastic
approximation, and their sum, as a function of wavenumber k. Data for H =5, Γ = 5, Re = 0.
Plot shows that the sum of the integrals is positive for a band of finite wavenumbers, but is
negative at low and high k.

for the wavenumber range mentioned above, and the first integral provides additional
negative contribution to balance (B 3). This implies that for low wavenumbers the
horizontal velocity perturbations are in phase with horizontal interface fluctuations
and thus tend to amplify the disturbance. On the other hand, the mean flow is out
of phase with horizontal interface fluctuations and hence tends to suppress them.
Thus, for k < 1, the stabilizing effect of mean flow overcomes the destabilizing effect
of horizontal velocity perturbations on horizontal interface fluctuations. However,
these roles are reversed for k > 1, i.e. the effect of mean flow on horizontal interface
deflection is now destabilizing while the interaction between horizontal interface
fluctuation and horizontal velocity perturbation becomes stabilizing and the latter
dominates the former. We have verified that the qualitative nature of different integrals
on the right-hand side remains similar for different values of H and Γ .

We also performed similar analysis for the extrapolated linear elastic model and
observed that the first integral is positive only when flow in the linear approximation
is unstable (see figure 19 for 0.1 <k < 3) while the second integral is always negative
and the third integral is always positive. We calculated the sum of second and third
integrals and observed that the sum of these two integrals is positive for unstable band
of wavenumbers (i.e. 0.1 <k < 3 ) while the first integral merely completes the balance
in (B 3). This implies that for the extrapolated linear elastic model, the mean flow
amplifies the horizontal interface deflection and it dominates the stabilizing effect of
horizontal velocity fluctuations on horizontal interface deflection, thus rendering the
flow unstable. Based on the above discussion, we conclude that for the case of linear
elastic approximation, it is relatively simple to identify the destabilizing mechanism
based on the analysis of the velocity continuity conditions. This is possibly because the
tangential velocity condition is the only place where time dependence and coupling
between mean flow and fluctuations occur for the extrapolated linear elastic model.
For flow through a neo-Hookean tube, where the coupling between base state and
fluctuations occurs at several places in the linearized equations of the solid, the role of
the second and third integrals is rather complicated and depends on the wavenumber
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regime. Thus, in contrast to the linear elastic approximation, a simple mechanism
cannot be discerned using the above analysis for flow through neo-Hookean tubes.
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